

A high resolution glacier model with debris effects in Bhutan Himalaya

Research flow

Multiple climate data at high elevations Precipitation, air temperature and etc.

Research flow

Multiple climate data at high elevations Precipitation, air temperature and etc.

Initial glacier data

Energy Balance Model

Debris on Glaciers

Supraglacial debris affects glacier melting rate significantly. (e.g. Mattson et al.,1993)

Ex) Rocks inhibits ice melting

(Photo: ©Florian Mair, 2010)

Debris on Glaciers

Effects of debris on glacier melts

Energy Balance Model

<u>Objective</u> Estimating glacier melts by a <u>glacier model</u> <u>based on energy balance with debris effects</u>

Development of debris information data
Model structure

1. Development of debris information data

Necessary parameters

To estimate debris effect,

- Thickness [m]
- Thermal conductivity [Wm⁻¹K⁻¹]

Ground observation is the only way

It is unrealistic to measure these parameters on a large scale.

Previous study

Some studies estimated thermal resistance of debris from satellite data.

	Target Region	Number of satellite images
Suzuki et al., 2007	Lunana region	11
Zhang et al., 2011	Hailugou glacier	2
Fujita et al., 2014	Trambau glacier	8

Distribution of thermal resistance on debris at Trambau glacier (Fujita et al., 2014)

Estimate <u>distribution of</u> thermal resistance of debris on Bhutan Glaciers

Details

Data	Data	Spatial Res.	Time Res.	Period
Landcat 9	Band 2~7	30m	16 days	2013-2017
Lanusato	Band 10 (TIR)	100m	16 days	2013-2017
ERA-Interim	Reanalysis data (Radiation, Air temp, Humidity, Wind speed)	0.75°	3hourly	2013-2017
AW3D30	Elevation data (ALOS PRISM)	30m	_	_
RGI 6.0	Glacier Outline data	Vector	_	

Details

ſ	Data	Data	Spatial Res.	Time Res.	Period
Landa et O		Band 2~7	30m	16 days	2013-2017
Lai	iusal o	Band 10 (TIR)	100m	16 days	2013-2017
		Reanalysis data	Multi-tempo	ral 208 d	ata set
E	Earth C L	bservation Satellite andsat 8			-2017
		Photo: CNASA	(Landsat, 2	013/11/13)	

Details

Data	Data	Spatial Res.	Time Res.	Period
Landcat 9	Band 2~7	30m	16 days	2013-2017
Lanusalo	Band 10 (TIR)	100m	16 days	2013-2017
ERA-Interim	Reanalysis data (Radiation, Air temp, Humidity, Wind speed)	0.75°	3hourly	2013-2017

ERA-Interim:

- Downward shortwave and longwave radiation
- Air temperature
- Relative humidity
- Wind speed

ERA-Interim / 2m temperature / NAO negative minus neutral impact JJA / 1981-2015

Reanalysis climate data by ECMWF

⁽Fig. from ERA-Interim Web page)

Details

Data	Data	Spatial Res.	Time Res.	Period
Landsat 8	Band 2~7	30m	16 days	2013-2017
	Band 10 (TIR)	100m	16 days	2013-2017
ERA-Interim	AW3D30: Elevation E	ALOS World Data (30m re	3D - 30m solution)	١
AW3D30	S ALL STOR			
RGI 6.0			8	
	7500m 3500m		ALOS 'PRIS	Photo: ©JAXA M' (JAXA)

Details

Data	Data	Sp	oatial R	es.	Time Res.	Period
Landcat 9	Band 2~7		30m	\sim	16 days	2013-2017
Lanusalo	Band 10 (TIR)		100m	21	16 days	2013-2017
ERA-Interim	Reanalysis data (Radiation, Air temp, Humidity, Wind speed)		フィールド FID Shape RGIId GLIMSId	値 3004 ポリゴン RGI60- G00684	11.03005 6E45813N	
AW3D30	Elevation data (ALOS PRISM)		BgnDate EndDate CenLon CenLat	2003079 2003099 6.84583 45.8129	99 99	
RGI 6.0	Glacier Outline data	ور در	01Region	11		
			O2Region Area Zmin Zmax Zmed Slope Aspect Lmax Status Connect Form TermType Surging Linkages	1 10.986 1736 4776 2926 23.7 168 9042 0 0 0 0 0 0 0 9 9		

Calculation of TR

Thermal Resistance (TR) [m² K W⁻¹]

Flow of calculation

Data Set 208 Data Set 3 Data Set 2 Data Set 1 **AW3D30** Landsat 8 Climate data **Elevation Data**) Band 2, 4~7, 10 (Downward radiation, Air temp., Wind speed, Relative humidity) Surface Temperature Albedo Latent Heat/Sensible Heat Flux Net Radiation Thermal Resistance 208 data Wide-area Map of **RGI 6.0 Outline of Glaciers** Thermal Resistance

Thermal Resistance on glaciers

90m-resolution

Flow of calculation

TR

②Large area map of TR

90m resolution distribution map of thermal resistance

How to eliminate cloud and snow

Cloud and snow makes TR lower
⇒ select maximum value
Interannual variation can be neglected

2013/08/15

2010/08/07

Classification by Landsat 8 (Kraaijenbrink et al., 2017)

- rs has hes which <u>TR value</u>.
- Several large glaciers has <u>much debris</u>.
- There are small patches which has <u>erroneous high TR value</u>. (should be corrected)

2. Model Structure

24

Base Model

Glacier Model by Fujita et al., 2014 (Fujita model)

- Developed for Trambau glacier (located in Nepal Himalaya)
- Energy Balance Model with Debris effect

Hydrol. Earth Syst. Sci., 18, 2679–2694, 2014 www.hydrol-earth-syst-sci.net/18/2679/2014/ doi:10.5194/hess-18-2679-2014 © Author(s) 2014. CC Attribution 3.0 License.

Hydrology and

Earth System

Modelling runoff from a Himalayan debris-covered glacier

K. Fujita and A. Sakai

Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan

Correspondence to: K. Fujita (cozy@nagoya-u.jp)

Received: 16 January 2014 – Published in Hydrol. Earth Syst. Sci. Discuss.: 26 February 2014 Revised: 28 April 2014 – Accepted: 24 May 2014 – Published: 24 July 2014

Abstract. Although the processes by which glacial debris mantles alter the melting of glacier ice have been well studied, the mass balance and runoff patterns of Himalayan debris-covered glaciers and the response of these factors to climate change are not well understood. Many previous studies have addressed mechanisms of ice melt under debris mantles by applying multiplicative parameters derived from field experiments, and other studies have calculated the detal runoff to changing precipitation is complex because of the different responses of individual components (glacier, debris, and ice-free terrain) to precipitation.

1 Introduction

Base Model

Glacier Model by Fujita et al., 2014 (Fujita model)

- **Developed for Trambau glacier** (located in Nepal Himalaya)
- **Energy Balance Model** with Debris effect
- Glacier area is divided into (i) Clean ice and divided di divided divided divided divided di divided divided divided d (ii) Debris-covered ice.

Modelling runoff from a Himalayan debris-covered glacier

K. Fujita and A. Sakai

Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan

Correspondence to: K. Fujita (cozy@nagoya-u.jp)

Received: 16 January 2014 - Published in Hydrol. Earth Syst. Sci. Discuss .: 26 February 2014 Revised: 28 April 2014 - Accepted: 24 May 2014 - Published: 24 July 2014

Abstract. Although the processes by which glacial debris mantles alter the melting of glacier ice have been well studied, the mass balance and runoff patterns of Himalayan debris-covered glaciers and the response of these factors field experiments, and other studies have calculated the details of heat conduction through the debris layer. However,

tal runoff to changing precipitation is complex because of the different responses of individual components (glacier, debris, and ice-free terrain) to precipitation.

Hydrology and

1 Introduction

Glaciers are considered to play an important role as the wa-

Model Structure

Mass balance was calculated in clean ice part and debris-covered part separately.

Model Structure

Glacier area evolution

Area change is calculated from mass change.

Calibration method

Local model

Calibration by using ground observation data of each glacier

Large scale

Local

Global Glacier Models (~2015)

Extrapolating limited direct observation data (Radic and Hock, 2011; Radic et al., 2013; Hirabayashi et al., 2010, 2013; Marzeion et al., 2012; Bliss et al., 2014)

Global Glacier Model (Huss et al., 2015)

Extrapolating is problematic.

Direct observation data is restricted to rather small glaciers

Each individual glacier's mass balance ΔM_g is assumed to be same as the average regional mass balance ΔM_{reg}

 $\Delta M_g = \Delta M_{reg}$

Calibration Flow

Calibration method:

 $\Delta M_g = \Delta M_{reg}$ $\Delta M_{reg}: \underline{\text{Average regional mass}}$ $\underline{\text{balance in whole Asia (2003-2009)}}$ (Gardner et al., 2013) $\Rightarrow \text{Observation data of Bhutan glacier}$ will improve model performance.

Calibration period: 2003-2009

Calibration parameters: c_{prec} : Precipitation ratio [%] $(0.8 < c_{prec} < 2.0)$ ΔT_{air} : Air temperature [°C]

Initial value:

$$c_{prec} = 1.0, \quad \Delta T_{air} = 0.0$$

Model Structure

Research flow

Multiple climate data at high elevations Precipitation, air temperature and etc. 33

River Discharge (H08)

34

Summary

- The distribution of thermal resistance of debris on glaciers has been detected in Bhutan by using remote-sensing data.
- A glacier model with energy balance and debris effects was developed.
- Observation data of Bhutan glaciers will improve model performance.

Next Steps

- Historical and future simulation of glacier runoff for all glaciers in Bhutan (Glacier model).
- Simulation of river discharge including the effects of glacier melts (H08).

Thank you for your kind attention