Glacio-hydrological projections with downscaled climate data

Megumi Watanabe and Shinjiro Kanae Tokyo Institute of Technology 2018/02/08

Current assessments and our objective

Current assessments for impact of climate change

(NATIONAL INTEGRATED WATER RESOURCES MANAGEMENT PLAN 2016)

Rainfall

Change 2015 - 2030 (%) Change 2015 - 2060 (%) Projected changes in precipitation for RCP4.5

To estimate of river discharge taking into account glacier melt with a regional climate projection

4

Multiple climate data at high elevations Precipitation, air temperature and etc.

Multiple climate data at high elevations Precipitation, air temperature and etc.

Multiple climate data at high elevations Precipitation, air temperature and etc.

Initial glacier data

Multiple climate data at high elevations Precipitation, air temperature and etc.

Initial glacier data

Multiple climate data at high elevations Precipitation, air temperature and etc.

Past period

- Uncertainty
- Data
 - Air temperature
 - Precipitation

Future period (GCMs)

- Uncertainty
- Bias correction
- Multi-model

10 **Uncertainty of climate data** for the past period 10 50°N 9 8 6 35°N 5 4 2 1 20°N∟ 60°E 90°F The number of gauge (APHRODITE)

The scarcity of in-situ observations (for temperature and precipitation) at high elevations

Temperature data for the past

TA1 H08

(Hirabayashi et al., 2008)

http://www.ushistory.org/franklin/fun/thermometer.htm

TA2 ERA-Interim

(Dee et al., 2012)

https://serc.carleton.edu/eet/envisioningcli matechange/part_2.html

Reanalysis Hybrid of observations and model

It could be applied to sparsely observed regions

http://www.stuffintheair.com/rain-gauge.html

Precipitation data for the past PR1 APHRODITE PR2 Sakai Inverse estimation using

MSWEP+PR (This study) PR4

Gauge

glacier

elevation

Satellite Reanalysis Gauge

Directly detect rain drop using satellite radar

PR3

ليتناسا ساسا ساسا سا

MSWEP

©JAXA

Inverse

estimation

using

discharge

Precipitation data for the past

PR4 MSWEP + PR (This study)

The peak local-time distribution of precipitation showed a relationship with the topography in the order of precipitation radar (strongest relationship), microwave radiometer, and infrared products.

Multiple climate data at high elevations Precipitation, air temperature and etc.

Past period

- Uncertainty
- Data
 - Air temperature
 - Precipitation

Future period (GCMs)

- Uncertainty
- Bias correction
- Multi-model

Uncertainty of climate data for the future

20

Spread

climate

models

of

Projected change in temperature for RCP4.5 (NIWRNP 2016) Projected annual total precipitation from CMIP5 GCMs (RCP8.5)

Climate models

Coarse spatial resolution & bias
Spread among models

Bias correction

Multi-model

Projected air temperature in 2080-2010 by INM-CM4, RCP8.5

Multi-scenario, Multi-model

22

GCM2 Median temperature & snowfall

GCM3 More snowfall

Multiple climate data at high elevations Precipitation, air temperature and etc.

Initial glacier data

Initial glacier data

24

The latest glacier inventory

"Randolph Glacier Inventory"

- A globally complete inventory of glacier outlines using <u>modern</u> <u>satellite (such as Landsat or ASTER)</u> <u>imagery</u>
- Version 6.0: <u>released July 28, 2017.</u>
- Information
 - Glacier shape
 - Location (latitude & longitude)
 - Glacier area
 - Altitude
 - Length
 - - -

25

Multiple climate data at high elevations Precipitation, air temperature and etc.

Temperature index glacier model

Glacier model –mass balance-

(Hirabayashi et al., 2013)

Summary

29

Today's summary

- Multiple climate data for the past period
 - Air temperature (In-situ / Reanalysis)
 - Precipitation (In-situ / Reanalysis / Inverse estimations)
- Climate data for the future period
 - Bias correction of GCMs
 - Multi-GCMs
- Initial glacier data from the inventory
- Temperature index glacier model
- Uncertainty range of climate data
- Uncertainty range of glacier projections