Development of Low-carbon Society Scenarios in Bhutan 2050

Kei Gomi National Institute for Environmental Studies

Yuki Ochi E-konzal, inc.

2018/Feb/08 NIES, Japan

Contents

1. Concept, methodology and example of Low-carbon Society (LCS) Scenarios

2. Bhutan LCS scenario 2050

3. Exercise: Develop your own scenarios

Concept, methodology and example of Low-carbon Society Scenarios

- Mitigation of climate change
 - GHG emissions
 - Mitigation options
- Methodology for developing LCS scenarios
- Case studies in Malaysia and Indonesia

GHG emissions by country

Sources: World Resource Institute http://www.wri.org/

Per Capita Emissions

Emission and Temperature rise

Table SPM.1: Key characteristics of the scenarios collected and assessed for WGIII AR5. For all parameters, the 10th to 90th percentile of the scenarios is shown^{1,2}. [Table 6.3]

CO2eq Concentrations in 2100 (CO2eq)		Relative Subcategories position of the RCPs ⁵	Cumulative CO2 emission ³ (GtCO2)		Change in CO2eq emissions compared to 2010 in (%) ⁴		Temperature change (relative to 1850–1900) ^{5,6}					
Category label	Subcategories		entitive sition of e RCPs ⁵ 2011–2050	2011-2100	2050	2100	2100 Temperature change (°C)7	Likelihood of staying below temperature level over the 21st century ⁸				
(concentration range) ⁹								1.5°C	2.0°C	3.0°C	4.0 °C	
< 430		Only a limited number of individual model studies have explored levels below 430 ppm CO2ea										
450 (430-480)	Total range ^{1,10}	RCP2.6	550-1300	630-1180	-72 to -41	-118 to -78	1.5-1.7 (1.0-2.8)	More unlikely than likely	Likely			
500 (480-530)	No overshoot of 530 ppm CO2eq		860-1180	960-1430	-57 to -42	-107 to -73	1.7-1.9 (1.2-2.9)	Unlikely	More likely than not	i Likely Like		
	Overshoot of 530 ppm CO2eq		1130-1530	990-1550	-55 to -25	-114 to -90	1.8-2.0 (1.2-3.3)		About as likely as not			
550 (530–580)	No overshoot of 580 ppm CO2eq		1070-1460	1240-2240	-47 to -19	-81 to -59	2.0-2.2 (1.4-3.6)		10 10 1		T 1 1	
	Overshoot of 580 ppm CO_2eq		1420-1750	1170-2100	-16 to 7	-183 to -86	2.1-2.3 (1.4-3.6)		than likely ¹²		Likely	
(580-650)	Total range	RCP4.5	1260-1640	1870-2440	-38 to 24	-134 to -50	2.3-2.6 (1.5-4.2)					
(650-720)	Total range		1310-1750	2570-3340	-11 to 17	-54 to -21	2.6-2.9 (1.8-4.5)		Unlikely	More likely than not		
(720–1000)	Total range	RCP6.0	1570-1940	3620-4990	18 to 54	-7 to 72	3.1-3.7 (2.1-5.8)	Unlikely11	Unlikelu!			
>1000	Total range	RCP8.5	1840-2310	5350-7010	52 to 95	74 to 178	4.1-4.8 (2.8-7.8)	Unitkely ¹¹	Unlikely ¹¹	Unlikely	More unlikely than likely	

- RCP2.6 (41~72% reduction in 2050) "Likely" achieves the 2 degree target
- RCP4.5(24~38% reduction in 2050) "More unlikely than likely"

Source: IPCC AR5, WG3, SPM, Table SPM.1

-50% by 2050

GHG Emission Pathways 2000-2100: All AR5 Scenarios

Source: IPCC AR5, WG3, SPM, Fig.SPM.4

Strategy for Mitigation

- Evaluation of mitigation options
 - Alternative options
 - "Marginal abatement cost curve"
 - Co-benefit / ancillary benefit
- Simulation of society as a whole
 - Integrated modeling
 - Low-carbon society Scenarios

Mitigation Options (Energy)

- Energy efficiency improvement: Provide utility output with less energy input
 - Demand sectors: Residential, Commercial, Industrial, Transport
 - Supply sectors: Power generation and transmission
- Fuel switch: Choosing fuel with less GHG emissions for unit energy output
 - Natural gas, nuclear, renewable energies
- Energy service reduction/shifting: Reducing level of activities demanding energy input
 - Compact city structure, modal shift
 - Coolbiz, HEMS/BEMS

Mitigation Options (Non-energy)

- **Capturing GHG**: Carbon capture and storage (CCS)
 - In powerplant and steal furnace
- Waste management: Reduce CH4 from landfill and CO2 from fossil carbon combustion
 - 3R (Reduce, Reuse and Recycle)
 - Energy recovery from incineration, CH4 collection from landfill
- Agriculture
 - Shifting feeds, appropriate fertilizer use, paddy field water management, etc.

• Forestry, Land use and land-use change

• Tree planting, reducing deforestation

How to choose?

"Marginal Abatement Cost (MAC)" curve (Japan, 2020)

Your cost is income of someone else.

	Consumpti	on losses in s	cost-effective cenarios	e implementation	Increase in total discounted mitigation costs in scenarios with limited availability of technologies				
	[% reduction in consumption relative to baseline]			[percentage point reduction in annualized consumption growth rate]	[% increase in total discounted mitigation costs (2015–2100) relative to default technology assumptions]				
2100 Concentration (ppm CO ₂ eq)	2030	2050	2100	2010-2100	No CCS	Nuclear phase out	Limited Solar / Wind	Limited Bio- energy	
450 (430–480)	1.7 (1.0–3.7) [N: 14]	3.4 (2.1–6.2)	4.8 (2.9–11.4)	0.06 (0.04–0.14)	138 (29–297) [N: 4]	7 (4–18) [N: 8]	6 (2–29) [N: 8]	64 (44–78) [N: 8]	
500 (480–530)	1.7 (0.6–2.1) [N: 32]	2.7 (1.5–4.2)	4.7 (2.4–10.6)	0.06 (0.03–0.13)					
550 (530–580)	0.6 (0.2–1.3) [N: 46]	1.7 (1.2–3.3)	3.8 (1.2–7.3)	0.04 (0.01–0.09)	39 (18–78) [N: 11]	13 (2–23) [N: 10]	8 (5–15) [N: 10]	18 (4–66) [N: 12]	
580–650	0.3 (0–0.9) [N: 16]	1.3 (0.5–2.0)	2.3 (1.2–4.4)	0.03 (0.01–0.05)					

Source: IPCC AR5, WG3, SPM, Table SPM.4

What to consider?

What to consider?

What to consider?

Social acceptance: Landscape

"Low-carbon society scenarios"

- Scenario: future image, computer-aided stories
- Alternative future societies achieving climate goals
- Not "Prediction" !
- "Back-casting"

Scenario

Basic of GHG emission *Projection*

Time

CO2 emissions from energy use

CO2 emission =

CO2 emissions from energy use

CO2 emission =

Energy service : Utility provided by using energy

Example:

Watching TV

Lighting a room

Cooling of spaces

Transporting one person by 10km

Producing iron & steel products

Driving Energy Energy CO2 force x service x efficiency x intensity

Driving force

Energy service × Energy CO2 efficiency × intensity

Population and/or household

GDP by industry

Х

- Commercial floor area
- Number of workers
- Number of passenger trips by mode
- Tons of freight transported

- Air conditioner per household
- Number of computers per office worker
- Average travel distance of passengers
- Average transport distance of freights
- Iron production per GDP

- Performance of air conditioner
- Power use of computers
- Fuel cost of vehicles
- Coal input for per ton of iron production

- Share of fuels for cooking
- Share of fuels for vehicles
- Share of energy sources for power generation
- Efficiency of coal/gas fired-powerplant

In Baseline & Policy Scenarios

Simulation by "Integrated Modelling"

Integration of all emission sectors

LCS scenario with Integrated Modeling A case in Malaysia

	2005	2020	2030	2020 /2005	2030 /2005	
Population	26.1	32.8	37.3	1.3	1.4	Million
Household	5.8	8.2	9.3	1.4	1.6	Million
GDP	509	996	1,601	2.0	3.1	Bill. RM
Per capita GDP	19.5	30.4	43.0	1.6	2.2	1000.RM
Gross output	1,604	3,135	4,929	2.0	3.1	Bill. RM
Primary	55	84	97	1.5	1.8	
Secondary	920	1,507	2,175	1.6	2.4	
Tertiary	629	1,544	2,657	2.5	4.2	
Passenger transport	169	315	359	1.9	2.1	Bill. pass-km
Freight transport	92	150	214	1.6	2.3	Bill. t-km

Projected output by 26 sectors

Projected transport volume

LCS scenario with Integrated Modeling A case in Malaysia

GHG emissions

Periods between projected years were interpolated linearly.

Emission intensity (GHG emission per GDP)

Per capita GHG emission

Contribution to emission reduction in 2020 CM1 CM2 Others Others 1% 2% Forestry&Landu EEI in demand se Forestry&Landu Agriculture sectors 18% EEI in demand se 1% 32% 29% sectors 38% Waste 18% Agriculture Waste 1% EEI in power 7% supply 14% **EEI** in power Renewable Renewable Modal shift Modal shift supply energy 5% energy 4% 11% 8% 11%

Indonesia Scenarios GHG emissions

BaU: Business as usual CM1: Current policy CM2: Current policy + Biofuel CM3: CM2 + utilizing abandoned land

Biofuel had adverse impact

Deforestation for biofuel production increase total GHG emissions

Decomposition of emission change from CM1

Summary

- LCS scenario can support policy making for longterm mitigation goals
- Appropriate mitigation options should be chosen considering cost, effectiveness, co-benefit and risk
- Modeling can compare different options by quantifying there potentials